Probing an unknown elastic body with waves that scatter once: An inverse problem in anisotropic elasticity.

Teemu Saksala

joint with: Maarten V. de Hoop, Joonas Ilmavirta and Matti Lassas

Geometry and Topology Seminar, NC State

Problem

Can we recover some information about an unknown object via observing waves that

- travel through the object?
- scatter once inside before leaving the object?

- We send and receive waves anywhere on the surface of an unknown object
- Waves do not reflect from the surface, but exit the object

Our goal is to recover physical quantities that are coordinate independent!

(Teemu Saksala)

Broken ray tomography: Inverse problem of broken scattering relation

Sound waves: Riemannian geometry

2 Elastic waves: Finsler geometry

Broken ray tomography: Inverse problem of broken scattering relation

Principal symbol of a partial differential operator

$$\begin{array}{ll} \mbox{Fourier transfrom:} & \mathcal{F}(D^{\alpha}u)(p) = p^{\alpha}(\mathcal{F}u)(p), \\ p \in \mathbb{R}^{3}, \ \alpha \in \mathbb{N}^{3}, \quad |\alpha| = \sum_{i=1}^{3} \alpha_{i}, \quad \mathbf{D}^{\alpha} = (-i)^{|\alpha|} \prod_{i=1}^{3} \partial_{x_{i}}^{\alpha_{i}}, \quad p^{\alpha} = \prod_{i=1}^{3} p_{i}^{\alpha_{i}}. \end{array}$$

Thus we can think Partial Differential Operators of order $k \in \mathbb{N}$

$$P(x,\mathbf{D}) = \sum_{|\alpha| \le k} c_{\alpha}(x)\mathbf{D}^{\alpha}, \quad \text{ as polynomials } \quad P(x,p) := \sum_{|\alpha| \le k} c_{\alpha}(x)p^{\alpha}, \ (x,p) \in T^*\mathbb{R}^3$$

Principal symbol:

$$G(x,p) = \sum_{|\alpha|=k} c_{\alpha}(x)p^{\alpha}, \quad \text{if } c_{\alpha} \in C^{\infty}(\mathbb{R}^3) \Rightarrow G \in C^{\infty}(T^*\mathbb{R}^3)$$

(Teemu Saksala)

Consider G(x, p) as a smooth Hamiltonian function on $T^* \mathbb{R}^3$.

Integral curve:
$$(x(t), p(t)) \in T^* \mathbb{R}^3$$
, $\dot{x}(t) = \frac{\partial}{\partial p} G(x, p)$, $\dot{p}(t) = -\frac{\partial}{\partial x} G(x, p)$.

(x(t), p(t)) is a bi-characteristic curve if G(x(t), p(t)) = 0 for any $t \in \mathbb{R}$.

Operator P(x) of order k is elliptic if the principal symbol G(x, p) vanishes only at p = 0.

 $k = 2 \Leftrightarrow (c_{\alpha}(x))_{|\alpha|=2}$ is a symmetric postive definite matrix, for any $x \in \mathbb{R}^3$. $\Leftrightarrow (c_{\alpha}(x))_{|\alpha|=2}$ yields a Riemannian metric g on \mathbb{R}^3 .

The Hamiltonian flow of an elliptic operator is a co-geodesic flow of a Riemannian metric g. (x(t) is a geodesic of g)

Scalar waves and travel times on a smooth bounded domain $M \subset \mathbb{R}^3$

Scalar wave equation: P is elliptic second order operator

$$\begin{pmatrix} \left(\frac{\partial^2}{\partial x_0^2} - P(x, \mathbf{D}) + \mathsf{l.o.t}\right) u(x_0, x) = 0, & (x_0, x) \in (0, T) \times M \\ u = h, & \mathsf{on} \ (0, T) \times \partial M, & u(0, x) = \frac{\partial}{\partial x_0} u(0, x) = 0, & x \in M. \end{cases}$$

- Principal symbol: $G_{\Box}((x_0, x); (\omega, p)) = \omega^2 G(x, p) = \omega^2 g^{ij}(x)p_ip_j$
- Bi-characteristics: $(X(t), P(t)) = ((2\omega t, x(t)), (1, \pm p(t))) \in T^* \mathbb{R}^{1+3}$, (x(t) is a geodesic of g).

Data:

- Let $\gamma(t) = (x(t), p(t))$ be an integral curve of G, $\|p\|_g = 1$, that enters M at x_1 and exits at x_2 .
- Travel time: $d(x_1, x_2) := \inf_{\gamma} \{ \inf\{t \in (0, \infty) : \text{ s.t. } x(0) = x_1, x(t) = x_2 \} \}$ (Distance w.r.t. g).

Problem

Can we recover g if the travel time is given for all integral curves of G, passing through M?

Assumption (data):

• $(M, g_i), i \in \{1, 2\}$ smooth Riemannian manifolds with boundary

$$d_1(z,w) = d_2(z,w); \quad z,w \in \partial M$$

Inverse Problem: Is there a Riemannian isometry $\Psi : (M, g_1) \rightarrow (M, g_2)$ that is an identity at ∂M ?

(invariance of the problem) If so (M, g_i) is boundary rigid

In general, manifolds are not boundary rigid

Small variations of the metric in the slow area won't affect boundary distances $d(z, w_i)!$

"Better geometries"

- Simple manifolds:
 - ∂M is strictly convex
 - Each pair of points is connected by a unique minimizing geodesic

Conjecture: Simple Riemannian manifolds are boundary rigid (Michel 1981)

- 2D (Pestov-Uhlmann 2005)
- Convex foliation:
 - $\{f^{-1}\{s\} \subset M \text{ strictly convex surface }: \forall s \in [0, S)\}$
 - smooth $f:M\to [0,S),\ Df\neq 0$

Foliated 3D Riemannian manifolds are boundary rigid (Stefanov-Uhlmann-Vasy 2017)

Small data (sources only at the boundary) makes boundary rigidity problem very difficult!

more data (broken geodesics)

more general geometry

Sound waves: Riemannian geometry

2 Elastic waves: Finsler geometry

Broken ray tomography: Inverse problem of broken scattering relation

Elastic wave equation on a bounded smooth domain $M \subset \mathbb{R}^3$

$$T>0, \quad \mathbf{C}(x)=C_{ik}^{j\ell}(x)=C_{jk}^{i\ell}(x)=C_{ki}^{\ell j}(x) \text{ anisotropic stiffness tensor on } M.$$

Anisotropic elastic wave equation in Cartesian coordinates:

$$\left\{ \begin{array}{ll} \left(\delta_{ik} \frac{\partial^2}{\partial t^2} - \left(C_{ik}^{j\ell}(x) \frac{\partial}{\partial x^j} \frac{\partial}{\partial x^\ell} \right) + \mathrm{l.o.t} \right) u^k(t,x) = 0, \quad (t,x) \in (0,T) \times M \\ u = h, \quad \mathrm{on} \ (0,T) \times \partial M, \quad u(0,x) = \frac{\partial}{\partial t} u(0,x) = 0, \quad x \in M. \end{array} \right.$$

displacement: u, boundary source: $h \in C^{\infty}((0,T) \times \partial M)$,

 $\begin{array}{ll} \mbox{Principal symbol:} & \omega^2 \delta_{ik} - \Gamma_{ik}(x,p), & i,k \in \{1,2,3\}. \\ \mbox{Christoffel matrix:} & \Gamma_{ik}(x,p) := C_{ik}^{j\ell}(x) p_j p_\ell & \mbox{is symmetric in } (i,k). \end{array}$

Travel time tomography for qP-waves.

 Γ_{ik} has 3 eigenvalues $G^m \in C(T^* \mathbb{R}^3)$.

Suppose $G^1(x,p) > G^m(x,p), m \in \{2,3\}.$

qP-Hamiltonian: $H(x,p) := G^1(x,p) \in C^{\infty}(T^*\mathbb{R}^3).$ is given by a Finsler metric.

 $\mathbf{qP}\text{-}\mathbf{waves}$ are the solutions of $\Psi \mathsf{DO}$ equation:

$$\left(\frac{\partial^2}{\partial t^2} - G^1(x, \mathbf{D})\right) u(t, x) = 0, \quad \text{ in } (0, T) \times M.$$

Problem

Can we recover G^1 if the travel times for all qP-waves, passing through M, are known?

(Teemu Saksala)

What is a Finsler manifold?

Let M be a smooth manifold of dimension $n\geq 2$

A continuous function $F\colon TM\to [0,\infty)$ is a Finsler metric if

 $\ \, \bullet \ \, F\colon TM\setminus\{0\}\to [0,\infty) \text{ is smooth}$

 ${\it \bigcirc} \ \, {\rm for \ all} \ \, (x,v)\in TM \ \, {\rm and} \ \, a>0 \ \, {\rm holds} \ \, F(x,av)=aF(x,v)$

• for all $(x, v) \in TM \setminus \{0\}$ the Hessian

$$\left(\frac{1}{2}\frac{\partial}{\partial v^{i}}\frac{\partial}{\partial v^{j}}F^{2}(x,v)\right)_{i,j=1}^{n} =: \left(g_{ij}(x,v)\right)_{i,j=1}^{n}$$

is symmetric and positive definite, g_{ij} is called the local Riemannian metric

 $F(x, \cdot)$ is a non-symmetric $(F(x, v) \neq F(x, -v))$ norm on every tangent space $T_xM, x \in M$

Finsler function F is Riemannian if and only if g(x, v) = g(x)

(Teemu Saksala)

Euclidean and Randers unit spheres

The Finsler distance is defined as Riemannian, by the length of curves

In general Finsler distance function is not symmetric

$$d(p,q) \neq d(q,p), \quad p,q \in M$$

However we assume that:

d(p,q) = d(q,p).

Sound waves: Riemannian geometry

2 Elastic waves: Finsler geometry

3 Broken ray tomography: Inverse problem of broken scattering relation

Reflection tomography for qP-waves

Problem

Can we recover the largest eigen value G^1 if we know

- total travel times
- entering points and directions
- exiting points and directions

For any qP-wave that scatters once?

Broken ray tomography on Finsler manifolds

Definition (Broken scattering relation)

Let (M, F) be a compact symmetric Finsler manifold with boundary. For each t > 0 we define a relation R_t on $\partial_{in}\Omega M$ so that $(x_1, v_1)R_t(x_2, v_2)$ if there exist two numbers $t_1, t_2 > 0$ for which

$$\gamma_1 + t_2 = t$$
 and $\gamma_{x_1,v_1}(t_1) = \gamma_{x_2,v_2}(t_2).$

Problem

Can we recover (M, F), modulo change of coordinates, from $\{R_t : t > 0\}$?

• Yes, if F is Riemannian, Kurylev-Lassas-Uhlmann (2010)

Definition

A Finsler manifold with boundary has a strictly convex foliation if there is a smooth function $f: M \to \mathbb{R}$ so that

- $f^{-1}{0} = \partial M$, $f^{-1}(0, S] = int(M)$, $f^{-1}(S)$ has empty interior
- **2** for each $s \in [0, S)$ the set $f^{-1}(s)$ is a strictly convex smooth surface

For radial wave speed $F = c(r)\delta_{ij}$ this is a generalization of the classical Herglotz condition $\frac{d}{d}\left(\begin{array}{c} r \\ r \end{array}\right) = 0$

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{r}{c(r)}\right) > 0,$$

Theorem (de Hoop, Ilmavirta, Lassas, S (2020))

Let (M, F) be a compact symmetric Finsler manifolds of dim ≥ 3 , with boundary. If $(\partial M, F|_{\partial TM})$ is known and (M, F) has a strictly convex foliation, then the broken scattering relations $\{R_t : t > 0\}$ determine (M, F) modulo change of coordinates.

Proof:

- Any $p \in M$ can be represented (non-uniquely) by its closest point $z_p \in \partial M$ and $d(p, z_0)$ distance to ∂M
- For $(z_0,t_0)\in\partial M imes [0, au_{\partial M}(z_0)]$ find the rays $\gamma_{z,V(z)}$

 $F(x_0,t_0)=\{(V(z),t(z)):z\in\partial M, \text{ near } z_0\}$

crossing the normal ray at $\gamma_{z_0,\nu}(t_0) = \gamma_{z,V(z)}(t(z))$.

• $V(z_1)R_{t(z_1)+t(z_2)}V(z_2)$ only tells that two rays intersect, not the intersection point!

From broken Scattering relation to boundary distance functions

- Choose $z_0, q \in \partial M$ and $t_0 \in [0, \tau_{\partial M}(z_0)]$. Denote $p := \gamma_{z_0,\nu}(t_0)$
- ∂M convex \Rightarrow a distance minimizing curve $\gamma_{q,\eta} \colon [0, d(p, q)] \to M$ from q to p is a geodesic.

 $S := \{s > 0: \text{ There exist } \eta \in S_q M \text{, and } F(z_0, t_0) \text{ s.t. } V(z) R_{s+t(z)} \eta \text{ holds} \}$ Then $d(p, q) = \inf S$

Finslerian boundary distance functions

G(M,F) the set of directions corresponding to distance minimizing geodesic to ∂M .

Theorem (de Hoop, Ilmavirta, Lassas, S)

The boundary distance data determine

- topology and coordinate structure of M.
- F in G(M, F), but not outside.

(Teemu Saksala)

Anisotropic IP

Using the foliation to peal M

We have the foliation given by function $f: M \to \mathbb{R}$ so that

- $\textbf{0} \ f^{-1}\{0\} = \partial M, \ f^{-1}(0,S] = \operatorname{int}(M), \ f^{-1}(S) \text{ has empty interior}$
- **2** for each $s \in [0, S)$ the set $f^{-1}(s)$ is a strictly convex smooth surface.

Pealing procedure:

• Since ∂M is convex there exists $\epsilon > 0$ s.t.

 $d(p,\partial M)<\epsilon \ \Rightarrow \ \text{hemisphere at} \ p\subset G(M,F).$

- We know F in G(M, F)
- Symmetry \Rightarrow we know F on T_pM , if $d(p, \partial M) < \epsilon$.
- Recover F on $f^{-1}[0,s], s > 0$ depending on ϵ .
- Push data on the convex surface $f^{-1}(s)$.
- Repeat the arguments above, until ${\cal M}$ has been depleted.

Talk was based on the following manuscripts

• A foliated and reversible Finsler manifold is determined by its broken scattering relation, in collaboration with, Maarten V. de Hoop, <u>Joonas Ilmavirta</u> and <u>Matti Lassas</u>, arXiv:2003.12657

Inverse problem for compact Finsler manifolds with the boundary distance map, in collaboration with, Maarten V. de Hoop, <u>Joonas Ilmavirta</u> and <u>Matti Lassas</u>, arXiv:1901.03902

Thank you for your attention!